Indian Statistical Institute, Bangalore

B.Math (Hons.) II Year, Second Semester Semestral Examination

Optimization

Time: 3 hours April 27, 2011 Instructor: Pl.Muthuramalingam

Maximum marks: 50

1. For the system

$$x_1 + 2x_2 - 3x_3 + x_4 = 7$$
$$2x_1 - 7x_3 + x_4 = 9,$$

 $x_j \ge 0$ for all j = 1, 2, 3, 4 find all basic solutions, basic feasible solutions, nondegenerate bfs and degenerate bfs. [7]

Hint: Find a solution for $a_1x + b_1y = c_1$, $a_2x + b_2y = c_2$.

- 2. a) Let $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k \in R^n$ and $S = \{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k : \lambda_i \ge 0, \lambda_1 + \lambda_2 + \dots + \lambda_k = 1\}$. Let $f : R^n \longrightarrow R$ be any linear map. Show that $\max_{S} f = \max_{i} f(\mathbf{v}_i)$. [2]
 - b) Let P be a polygonal region in \mathbb{R}^2 given by

$$2x_1 + x_2 \ge 4$$

$$x_1 - x_2 \ge -4$$

$$-3x_1 + x_2 \ge -15$$

$$-x_1 \ge -7$$

$$x_1 \ge 0, x_2 \ge 0.$$

Let $c_1, c_2 \in R$. Define $g: R^2 \longrightarrow R$ by $g(x_1, x_2) = c_1x_1 + c_2x_2$. Determine $\max_{\mathcal{D}} g$ and $\min_{\mathcal{D}} g$ in terms of c_1, c_2 . [3]

- 3. Let $R_n^{++} = \{ \mathbf{p} = (p_1, p_2, \dots p_n) \text{ with } p_i > 0 \text{ for each } i \}$. Let $\Delta_n = \{(x_1, x_2, \dots x_n) : x_i \geq 0 \text{ for each } i \text{ and } \sum x_i = 1 \}$. Define, for $\mathbf{p} \in R_n^{++}$, $S_{\mathbf{p}} : \Delta_n \longrightarrow \Delta_n \text{ by } S_{\mathbf{p}}(x_1, x_2, \dots, x_n) = \frac{(p_1 x_1, p_2 x_2, \dots p_n x_n)}{\sum p_j x_j}$
 - a) Let $\mathbf{p}, \mathbf{q} \in R_n^{++}$. Let $\mathbf{r} = (r_1, r_2, \dots, r_n)$ with $r_j = p_j q_j$. Find a relation between $S_{\mathbf{p}} \circ S_{\mathbf{q}}$ and $S_{\mathbf{r}}$ and prove your claim. [3]
 - b) Show that $S_{\mathbf{p}}$ is 1-1, onto for each \mathbf{p} in R_n^{++} . [1]
 - c) Show that $S_{\mathbf{p}}$ maps any straight line in Δ_n to a straight line. [3]

4. Let $A: R_{col}^n \longrightarrow R_{col}^m$ be a linear and onto map. Show that $\sup_{\mathbf{x} \in \triangle_n} \inf_i \sum_j a_{ij} x_j = \inf_{\mathbf{y} \in \triangle_m} \sup_j \sum_i a_{ij} y_i$. [6]

Hint: If you need, conversion table from primal to dual form, it is given below

TABLE

$$\begin{array}{ll} \text{Primal} & \text{Dual} \\ \text{row } i \sum_j a_{ij} x_j = b_i & y_i \text{ real} \\ \\ \text{row} p \sum_j a_{pj} x_j \geq b_p & y_p \geq 0 \\ \\ \text{variable } j \ x_j \text{ real} & \sum_i y_i a_{ij} = c_j \\ \\ \text{var } q \ x_q \geq 0 & \sum_i y_i a_{iq} \leq c_q \\ \\ \\ \min \sum c_j x_j & \max \sum y_i b_i \end{array}$$

5. Define $f, g: R^2 \longrightarrow R, L: R^2 \times R \longrightarrow R$ by

$$f(x,y) = 2x^3 - 3x^2$$

$$g(x,y) = (3-x)^3 - y^2$$

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y).$$

Let D =
$$\{(x,y) : g(x,y) = 0\}$$

a) Show that
$$\max_{D} f$$
 is attained at $(3,0)$. [3]

- b) If (x, y, λ) is a critical point for L is $\partial_x L, \partial_y L, \partial_\lambda L = 0$ at (x, y, λ) , then show that $(x, y, \lambda) \in \{(0, \pm \sqrt{27}, 0), (1, \pm \sqrt{8}, 0)\}.$ [2]
- c) Find the rank of g' at (3,0). [1]
- 6. Let $A: R_{col}^n \longrightarrow R_{col}^{m_0}$ be linear onto.

Let $A = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(m_0)}, \mathbf{a}^{(m_0+1)}, \cdots, \mathbf{a}^{(n)}]$. be the Column representation of A. Let $B = [\mathbf{a}^{(1)}, \cdots, \mathbf{a}^{(m_0)}]$, $N = [\mathbf{a}^{(m_0+1)}, \cdots, \mathbf{a}^{(n)}]$. Let $\mathbf{c} \in R_{col}^n \cdot \mathbf{c} = (c_1, c_2, \cdots, c_n)^t$, Define $\mathbf{c}_B, \mathbf{c}_N$ by $\mathbf{c}_B = (c_1, c_2, \cdots, c_{m_0})^t$, $\mathbf{c}_N = (c_{m_0+1}, \cdots, c_n)^t$. Define the reduced cost vector \mathbf{r} depending on \mathbf{c} , B as $\mathbf{r}_B = \mathbf{0}$, $\mathbf{r}_N = \mathbf{c}_N - (B^{-1}N)^t\mathbf{c}_B$. Let \mathbf{v} be any B basic feasible solution and \mathbf{v} any basic feasible solutions for $A\mathbf{x} = \mathbf{b}$.

a) Show that
$$-\mathbf{c}^t \mathbf{v} + \mathbf{c}^t \mathbf{y} = \mathbf{r}_N^t \mathbf{y}_N$$
. [3]

b) Assume further $B = m_o \times m_o$ identity matrix. Let \mathbf{v} be B basic non degenerate solution such that $\mathbf{c}^t \cdot \mathbf{v} = \inf\{\mathbf{c}^t \cdot \mathbf{y} : \mathbf{y} \geq 0, A\mathbf{y} = \mathbf{b}\}.$

Show that
$$\mathbf{r} \geq \mathbf{0}$$
. [6]

- 7. Let D be a convex set in \mathbb{R}^n and $f: D \longrightarrow \mathbb{R}$ a concave and \mathbb{C}^1 function. Show that \mathbf{x}^* is a global maxima for f if and may if $f'(\mathbf{x}^*)\mathbf{y} \leq 0$ for all \mathbf{y} pointing into D at \mathbf{x}^* [5]
- 8. Let A, \mathbf{b}, B be as in $Q_n 6(a)$. For $m_0 + 1 \leq j \leq n$, $1 \leq l \leq m_0$ let $B(j, l) = {\mathbf{a}^{(j)}} \cup B/{{\mathbf{a}^{(l)}}}$. For j as above, let ${\mathbf{a}^{(j)}} = \sum_{i=1}^{m_0} \gamma_i^{(j)} {\mathbf{a}^{(i)}}$. Let ${\mathbf{x}}$ be any B basic feasible solution.
 - a) Find a necessary sufficient condition so that B(j, l) is a basis. [2]
 - b) Assume that $\{i:\gamma_i^{(j)}>0\}$ is non empty. Let $\theta_0^{(j)}=\min\{\frac{x_i}{\gamma_i^{(j)}}:\gamma_i^{(j)}>0\}$
 - 0 = $\frac{x_l}{\gamma_l^{(j)}}$ for some l in $\{1, 2, \dots, m_0\}$. Define $\mathbf{y}^{(j)} = (y_1^{(j)}, y_2^{(j)}, \dots, y_n^{(j)})^t$
 - by $y_i^{(j)} = x_i \theta_0^{(j)} \gamma_i^{(j)}$. Then $\mathbf{y}^{(j)}$ is a B(j, l) basic feasible solution. [5]